Inexact Newton Preconditioning Techniques for Large Symmetric Eigenvalue Problems
نویسندگان
چکیده
This paper studies a number of Newton methods and use them to define new secondary linear systems of equations for the Davidson eigenvalue method. The new secondary equations avoid some common pitfalls of the existing ones such as the correction equation and the Jacobi-Davidson preconditioning. We will also demonstrate that the new schemes can be used efficiently in test problems.
منابع مشابه
Preconditioned Techniques for Large Eigenvalue Problems a Thesis Submitted to the Faculty of the Graduate School of the University of Minnesota by Kesheng Wu in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
This research focuses on nding a large number of eigenvalues and eigenvectors of a sparse symmetric or Hermitian matrix, for example, nding 1000 eigenpairs of a 100,000 100,000 matrix. These eigenvalue problems are challenging because the matrix size is too large for traditional QR based algorithms and the number of desired eigenpairs is too large for most common sparse eigenvalue algorithms. I...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملEfficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems
Efficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems L. Bergamaschi & A. Martínez a Department of Civil, Environmental and Architectural Engineering, University of Padua, via Trieste 63, 35100 Padova, Italy b Department of Mathematics, University of Padua, via Trieste 63, 35100 Padova, Italy Accepted author version posted online: 14 Apr 2014.Published online...
متن کاملPreconditioned Techniques For Large Eigenvalue Problems
This research focuses on nding a large number of eigenvalues and eigenvectors of a sparse symmetric or Hermitian matrix, for example, nding 1000 eigenpairs of a 100,000 100,000 matrix. These eigenvalue problems are challenging because the matrix size is too large for traditional QR based algorithms and the number of desired eigenpairs is too large for most common sparse eigenvalue algorithms. I...
متن کاملInexact Numerical Methods for Inverse Eigenvalue Problems
In this paper, we survey some of the latest development in using inexact Newton-like methods for solving inverse eigenvalue problems. These methods require the solutions of nonsymmetric and large linear systems. One can solve the approximate Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations...
متن کامل